五十路一区二区三区视频,久久免费Av播放,综合欧美亚洲日本少妇,国产高清精品aaa

  1. <td id="auzpv"></td>
    <td id="auzpv"><dfn id="auzpv"></dfn></td>
    您的位置:首頁(yè)>大學(xué)生活>

    教育資訊:非零矩陣的行列式可以等于零嗎

    可以。非零矩陣的行列式可以等于0,非零矩陣中所含元素不全為零,即其為至少有一個(gè)元素不為零的矩陣,也就至少存在一個(gè)一階行列式的值非零。非零矩陣乘積為零的條件是B中的列向量均為Ax=0的解。

    非零矩陣的行列式可以等于零嗎

    什么是行列式

    行列式在數(shù)學(xué)中,是一個(gè)函數(shù),其定義域?yàn)閐et的矩陣A,取值為一個(gè)標(biāo)量,寫作det(A)或|A|。無論是在線性代數(shù)、多項(xiàng)式理論,還是在微積分學(xué)中(比如說換元積分法中),行列式作為基本的數(shù)學(xué)工具,都有著重要的應(yīng)用。

    行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣?;蛘哒f,在n維歐幾里得空間中,行列式描述的是一個(gè)線性變換對(duì)“體積”所造成的影響。

    什么是矩陣

    矩陣是一個(gè)按照長(zhǎng)方陣列排列的復(fù)數(shù)或?qū)崝?shù)集合,最早來自于方程組的系數(shù)及常數(shù)所構(gòu)成的方陣。這一概念由19世紀(jì)英國(guó)數(shù)學(xué)家凱利首先提出。矩陣是高等代數(shù)學(xué)中的常見工具,也常見于統(tǒng)計(jì)分析等應(yīng)用數(shù)學(xué)學(xué)科中。在物理學(xué)中,矩陣于電路學(xué)、力學(xué)、光學(xué)和量子物理中都有應(yīng)用;計(jì)算機(jī)科學(xué)中,三維動(dòng)畫制作也需要用到矩陣。

    來源:高三網(wǎng)

    能發(fā)現(xiàn)自己知識(shí)上的薄弱環(huán)節(jié),在上課前補(bǔ)上這部分的知識(shí),不使它成為聽課時(shí)的“絆腳石”。這樣,就會(huì)順利理解新知識(shí),相信通過非零矩陣的行列式可以等于零嗎這篇文章能幫到你,在和好朋友分享的時(shí)候,也歡迎感興趣小伙伴們一起來探討。

    免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!