五十路一区二区三区视频,久久免费Av播放,综合欧美亚洲日本少妇,国产高清精品aaa

  1. <td id="auzpv"></td>
    <td id="auzpv"><dfn id="auzpv"></dfn></td>
    您的位置:首頁>大學(xué)生活>

    初中二次函數(shù)重點(diǎn)知識(shí)總結(jié)(初中二次函數(shù)所有知識(shí)點(diǎn))

    大家好,小初來為大家解答以上初中二次函數(shù)所有知識(shí)點(diǎn)的問題,小初也是到網(wǎng)上收集了一些相關(guān)的信息,那么下面分享給大家一起了解下吧。

    二次函數(shù)的定義

    一般像y=ax2 bx c(a,b,c為常數(shù),a0)這樣的函數(shù)稱為x的二次函數(shù),例如y=3x2,y=3x2-2,y=2x2 x-1都是二次函數(shù)。

    注:(1)二次函數(shù)是關(guān)于自變量的二次方程,二次項(xiàng)的系數(shù)A必須是非零實(shí)數(shù),即a0,而b和c是任意實(shí)數(shù),二次函數(shù)的表達(dá)式是代數(shù)表達(dá)式;

    (2)二次函數(shù)y=ax2 bx c(a、b、c為常數(shù),a0),自變量x的取值范圍均為實(shí)數(shù);

    (3)當(dāng)b=c=0時(shí),二次函數(shù)y=ax2是最簡(jiǎn)單的二次函數(shù);

    (4)一個(gè)函數(shù)是否為二次函數(shù),只有經(jīng)過化簡(jiǎn)整理才能得出結(jié)論,例如y=x2-x(x-1)化簡(jiǎn)后變成y=x,所以不是二次函數(shù)。

    拋物線的性質(zhì)

    1.拋物線是軸對(duì)稱圖形。對(duì)稱軸是直線。

    x=-b/2a .

    與拋物線對(duì)稱軸的唯一交點(diǎn)是拋物線的頂點(diǎn)p。

    特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是Y軸(即直線x=0)。

    2.拋物線有一個(gè)頂點(diǎn)P,其坐標(biāo)為

    p [- b/2a ,(4ac-b^2;)/4a ].

    當(dāng)-b/2a=0時(shí),p在Y軸上;當(dāng)=b 2-4ac=0時(shí),p在x軸上。

    3.二次系數(shù)A決定了拋物線的張開方向和大小。

    當(dāng)a0時(shí),拋物線向上張開;當(dāng)a0時(shí),拋物線向下打開。

    |a|越大,拋物線的開口越小。

    4.一階系數(shù)b和二階系數(shù)a共同決定了對(duì)稱軸的位置。

    當(dāng)A和B的個(gè)數(shù)相同(即ab0)時(shí),對(duì)稱軸在Y軸的左邊;

    當(dāng)A和B失號(hào)(即ab0)時(shí),對(duì)稱軸在Y軸的右邊。

    5.常數(shù)項(xiàng)C決定了拋物線與Y軸的交點(diǎn)。

    拋物線與Y軸在(0,c)的交點(diǎn)

    6.拋物線與X軸的交點(diǎn)個(gè)數(shù)

    當(dāng)=b 2-4ac0時(shí),拋物線與x軸有兩個(gè)交點(diǎn)。

    當(dāng)=b 2-4ac=0時(shí),拋物線與x軸相交。

    當(dāng)=b 2-4ac0時(shí),拋物線與x軸沒有交點(diǎn)。

    二次函數(shù)的三種表達(dá)式

    通式:y=ax 2bx c (a、b、c為常數(shù),a0)

    頂點(diǎn)[拋物線的頂點(diǎn)P(h,k)]:y=a(x-h)2k

    交點(diǎn)[僅拋物線與X軸的交點(diǎn)A(x1,0)和B(x2,0)]:Y=A(X-x1)(X-x2)

    以上三種形式可以轉(zhuǎn)換如下:

    (1)通式與頂點(diǎn)的關(guān)系

    對(duì)于二次函數(shù)y=ax 2bx c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b 2)/4a),即

    h=-b/2a=(x1 x2)/2

    k=(4ac-b^2)/4a

    通式與交點(diǎn)的關(guān)系

    X1,x2=[-b(b ^ 2-4ac)]/2a(即一元二次方程的求根公式)

    希望通過這篇文章能幫到你,在和好朋友分享的時(shí)候,也歡迎感興趣小伙伴們一起來探討。

    免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!